1) Calculate the kinetic energy in joules of an automobile weighing 2135 lb and traveling at 55 $\mathrm{mph} .(1 \mathrm{mile}=1.6093 \mathrm{~km}, 1 \mathrm{lb}=453.59 \mathrm{~g})$.
A) $1.2 \times 10^{4}$
B) $2.9 \times 10^{5}$
C) $5.9 \times 10^{5}$
D) $3.2 \times 10^{6}$
E) $3.2 \times 10^{-6}$
2) Calculate the kinetic energy in joules of a 150 lb jogger ( 68.1 kg ) traveling at $12.0 \mathrm{mile} / \mathrm{hr}(5.36$ $\mathrm{m} / \mathrm{s}$ ).
A) $1.96 \times 10^{3}$
B) 365
C) 978
D) 183
E) 68.1
3) Calculate the kinetic energy in joules of an 80.0 g bullet traveling at $300.0 \mathrm{~m} / \mathrm{s}$.
A) $3.60 \times 10^{6}$
B) $1.20 \times 10^{4}$
C) $3.60 \times 10^{3}$
D) 12.0
E) 80.0
4) Given the following reactions

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=44.01 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-483.64 \mathrm{~kJ}
\end{array}
$$

the enthalpy for the decomposition of liquid water into gaseous hydrogen and oxygen

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

is $\qquad$ kJ.
A) -395.62
B) -527.65
C) 439.63
D) 571.66
E) 527.65
5) The value of $\Delta \mathrm{H}^{\circ}$ for the following reaction is -3351 kJ :

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

The value of $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ is $\qquad$ kJ.
A) -3351
B) -1676
C) -32.86
D) -16.43
E) +3351
6) Given the data in the table below, $\Delta \mathrm{H}^{\circ}{ }_{\text {rxn }}$ for the reaction

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

is $\qquad$ kJ.

| Substance | $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{kJ} / \mathrm{mol})$ |
| :--- | :---: |
| $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$ | 523 |
| $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$ | -277.7 |
| $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(1)$ | -484.5 |
| $\mathrm{H}_{2} \mathrm{O}$ (1) | -285.8 |

A) - 79.0
B) -1048.0
C) -476.4
D) -492.6
E) The value of $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ of $\mathrm{O}_{2}(\mathrm{~g})$ is required for the calculation.
7) For a given process at constant pressure, $\Delta \mathrm{H}$ is negative. This means that the process is
$\qquad$ .
A) endothermic
B) equithermic
C) exothermic
D) a state function
E) energy
8) Which one of the following statements is true?
A) Enthalpy is an intensive property.
B) The enthalpy change for a reaction is independent of the state of the reactants and products.
C) Enthalpy is a state function.
D) H is the value of q measured under conditions of constant volume.
E) The enthalpy change of a reaction is the reciprocal of the $\Delta \mathrm{H}$ of the reverse reaction.
9) Which of the following statements is false?
A) Internal energy is a state function.
B) Enthalpy is an intensive property.
C) The enthalpy change for a reaction is equal in magnitude, but opposite in sign, to the enthalpy change for the reverse reaction.
D) The enthalpy change for a reaction depends on the state of the reactants and products.
E) The enthalpy of a reaction is equal to the heat of the reaction.
10) A chemical reaction that absorbs heat from the surroundings is said to be $\qquad$ and has a $\qquad$ $\Delta \mathrm{H}$ at constant pressure.
A) endothermic, positive
B) endothermic, negative
C) exothermic, negative
D) exothermic, positive
E) exothermic, neutral
11) Under what condition(s) is the enthalpy change of a process equal to the amount of heat transferred into or out of the system?
(a) temperature is constant
(b) pressure is constant
(c) volume is constant
A) a only
B) b only
C) c only
D) $a$ and $b$
E) b and c
12) What color of visible light has the highest energy?
A) violet
B) blue
C) red
D) green
E) yellow
13) Which one of the following is considered to be ionizing radiation?
A) visible light
B) radio waves
C) X-rays
D) microwaves
E) infrared radiation
14) A spectrum containing only specific wavelengths is called a $\qquad$ spectrum.
A) line
B) continuous
C) visible
D) Rydberg
E) invariant
15) When the electron in a hydrogen atom moves from $n=6$ to $n=2$, light with a wavelength of
$\qquad$ nm is emitted.
A) 93.8
B) 434
C) 487
D) 657
E) 410
16) At what speed (m/s) must a 10.0 mg object be moving to have a de Broglie wavelength of $3.3 \times 10^{-41} \mathrm{~m}$ ?
A) 4.1
B) $1.9 \times 10^{-11}$
C) $2.0 \times 10^{12}$
D) $3.3 \times 10^{-42}$
E) $9.1 \times 10^{31}$
17) The $\mathrm{n}=1$ shell contains $\qquad$ p orbitals. All the other shells contain p orbitals.
A) 3,6
B) 0,3
C) 6,2
D) 3,3
E) 0,6
18) The photoelectric effect is $\qquad$ .
A) the total reflection of light by metals giving them their typical luster
B) the production of current by silicon solar cells when exposed to sunlight
C) the ejection of electrons by a metal when struck with light of sufficient energy
D) the darkening of photographic film when exposed to an electric field
E) a relativistic effect
19) The uncertainty principle states that $\qquad$ .
A) matter and energy are really the same thing
B) it is impossible to know anything with certainty
C) it is impossible to know the exact position and momentum of an electron
D) there can only be one uncertain digit in a reported number
E) it is impossible to know how many electrons there are in an atom
20) Sodium is much more apt to exist as a cation than is chlorine. This is because $\qquad$ .
A) chlorine is a gas and sodium is a solid
B) chlorine has a greater electron affinity than sodium does
C) chlorine is bigger than sodium
D) chlorine has a greater ionization energy than sodium does
E) chlorine is more metallic than sodium

1) Answer: B

Diff: 3
Page Ref: Sec. 5.1
2) Answer: C

Diff: 2
Page Ref: Sec. 5.1
3) Answer: C

Diff: 2
Page Ref: Sec. 5.1
4) Answer: D

Diff: 3
Page Ref: Sec. 5.6
5) Answer: B

Diff: 2
Page Ref: Sec. 5.7
6) Answer: D

Diff: 3
Page Ref: Sec. 5.7
7) Answer: C

Diff: 1
Page Ref: Sec. 5.3
8) Answer: C

Diff: 3
Page Ref: Sec. 5.4
9) Answer: B

Diff: 3
Page Ref: Sec. 5.4
10) Answer: A

Diff: 2
Page Ref: Sec. 5.4
11) Answer: B

Diff: 3
Page Ref: Sec. 5.4
12) Answer: A

Diff: 1
Page Ref: Sec. 6.2
13) Answer: C

Diff: 1
Page Ref: Sec. 6.2
14) Answer: A

Diff: 1
Page Ref: Sec. 6.3
15) Answer: E

Diff: 1
Page Ref: Sec. 6.3
16) Answer: C

Diff: 1
Page Ref: Sec. 6.4
17) Answer: B

Diff: 1
Page Ref: Sec. 6.5
18) Answer: C

Diff: 1
Page Ref: Sec. 6.2
19) Answer: C

Diff: 1
Page Ref: Sec. 6.5
20) Answer: D

Diff: 1
Page Ref: Sec. 7.4

